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Analysis of Numerical Seismic Source Functions
by Finite Difference Method
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ABSTRACT

The finite difference synthetic seismograms are tested for
a number of seismic sources to understand their stability
characteristics. Processing techniques such as frequency
filtering and gain application are applied to improve the
model response. The grid dispersion due to high
frequencies contained in source appears to be controllable
by high cut filtering the model output. A single velocity
distribution model is used to prepare synthetic seismograms
with different source functions. The results seem to be in
agreement with the previous work. The output of modeling
algorithm gives correct arrival times but when the model
becomes unstable, the relative amplitude information of
different arrivals seems to be lost. The use of different
seismic source wavelets with same central frequency
indicates that model stability and numerical anisotropy also
depend on the pulse shape or phase characteristics of the
source. From the present study it is concluded that in
addition to previous work, which showed the numerical
stability a frequency dependent phenomenon, it also
depends on the phase spectrum of the input source
wavelet.

INTRODUCTION

A number of methods are available for forward modeling
such as ray tracing, normal incidence, etc., but numerical
methods based on heterogeneous elastic wave equation
are of special value. Except for the contributions due to
inelastic behavior of earth, they account for all phenomena
associated with seismic wave propagation such as multiple
reflections, surface waves (ground roll), shear and
converted wave.

In past the biggest drawback of these scheme was the
immense speed and huge computer memory required by
these schemes. The increased efficiency of modern
computers has imposed new emphases on the application
of numerical methods to forward modeling for the models
with dimensions of geological interest.

Any numerical scheme for the solution of a continuous
field problem is valid only if the deviation between analytical
and numerical results is small. The synthetic seismograms
based upon the finite difference formulations may contain
several of such effects, such as grid dispersion (Kelly et al.,
1976), numerical anisotropy and model truncation related
boundary or edge reflections.

Waves traveling on a discrete grid become progressively
dispersed with increasing traveltime. The phenomenon
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known as grid dispersion is studied in detail by Alford et al.
(1974), who have compared the synthetic seismograms
computed for the simple models by homogeneous
approximation finite difference and by analytical solutions
founded by using the Eigen function expression technique.
Their results show that the grid dispersion increases with
the increase in the ratio between wavelength of signal in the
medium and spatial grid interval. Grid dispersion produces
a normal variation of velocity with frequency, i.e. the higher
frequencies are delayed related to the lower signal
frequencies and “tailing” of the signal arises. As a rule of
thumb, the number of grid points per wavelength at upper
half power frequency of the source should be approximately
ten or more.

The model prepared by finite difference solution of the
wave equation is limited in terms of grid points by the
available computer memory. This restriction introduced
artificial boundaries, which produce undesired edge
reflections. There are new schemes made available
recently. One such method is the replacement of the
boundaries by the absorbing conditions (Randall, 1988;
Huato and Lees, 1997; Fornberg, 1988) having viscous
behavior.

As the edge reflections have the characteristic moveouts,
they can be eliminated by the migration in frequency wave
number domain as well.

The errors related with Finite Difference Method (FDM)
formulation of the elastic wave propagation problem as
described by Wild (1998) can be divided into three types:
first are the errors related with the linear drift that may vary
in magnitude from time to time and may also change its
sign during this. Second is numerical anisotropy related with
the anisotropic behavior of formulation while dealing with
more than one dimension even if the model is isotropic and
homogeneous. Third are most serious and are known as
the Neumann instability errors, these errors not only
propagate through a grid but their magnitude also increases
exponentially with iterations.

Along with these errors, Seron et al. (1996) have also
described errors such as numerical polarization that are
related with propagation of longitudinally or transversely
polarized waves.

WAVE PROPAGATION PROBLEM IN TWO
DIMENSIONAL HETEROGENEOUS MEDIA

The heterogeneous formulation of wave equation allows
spatial variations in the material properties. In the
heterogeneous formulation, Lamé constants A(m, n), u(m,
n) (where m and n are discrete spatial coordinates) need
not to be constant for a single medium but may have even
grid point to grid point variation. The scheme accounts
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automatically for the spatial variation in the elastic
parameters across an interface whose geometrical
complexity is limited only by the choice of the grid intervals
4x, and A4z. The boundary conditions in heterogeneous
formulation are implicitly defined.

The following equation describes the propagation of
elastic waves in 2D heterogeneous medium,
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The assumption that density p is constant throughout the
model enables us to write above equation as a function of
the spatially varying P and SV wave velocities. The Lamé
constants can be replaced by expressions in terms of SV
and P- waves velocities and after the conversion of the
above equation into a set of finite difference explicit solution
one gets the following results,
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SOURCE FUNCTIONS

A number of source wavelets are in use in seismic data
processing with well-studied frequency and time domain
characteristics. Model stability is found to be directly related
with the nature of seismic source. Model stability and effects
like numerical anisotropy is also found time dependent.

DIRAC OR SPIKE WAVELET

The spike or a unit impulse is the simplest most wavelet.
It is represented by a Dirac delta function &)
mathematically,
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The Fourier transform of Dirac delta has unit amplitude
for all frequencies -7 < w > z, which shows that Dirac pulse
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has white spectrum. In FDM modeling, the Dirac impulse
may produce grid dispersion due to its broad spectrum.

EXPLOSIVE POINT SOURCE

This source is commonly employed in the reflectivity
method, e.g. Fertig and Muller (1978) and Fuchs and Muller
(1971). Shtivelman (1984) has also used this source for
preparation of the synthetic seismograms by hybrid method.
The hybrid method devised by him combines FDM and ray
scheme.

The relation below gives the time variation of excitation
function,

sindt-1/m sinmét  0<t <T

fff) = 0 t<0&t>T

where 8 =Nzn /T, m=(N+2) /N,N=1,2,3...

input parameters required to generate the wavelet are the
time duration T and the number N of extrema in the interval
(0, T). A number of different signals can be generated from
a single excitation function by changing the values of above
parameters. The time variation of the source has a
component of characteristic sinc function of the type Sinx/x.
The signal in figure 1 is generated by usingthe N=2and T
= 30 m sec. The frequency spectrum of the source shows
that it is centered about the frequency of 50 Hz and has
another component of relatively smaller magnitude centered
about 110 Hz. But any component above the 100 Hz can be
neglected and 100 Hz can be taken as the highest
component of frequencies contained in the signal. The
increment time of our computations is 2 m sec, which
corresponds to a Nyquist frequency of 250 Hz.
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Figure 1- Time variation of Explosive Source Function.

GABOR WAVELET

This wavelet is close to the physical wavelets and does
not involve the Gibb's effect that appears as the result of
artificial truncation of signal in sinc functions such as
described by Pan (1998). It can produce signal whose main
or dominant frequency can be controlled as an initial
parameter (Hubral and Tygel, 1989). The real part of such

wavelets (cosine wavelet) is a zero phase wavelet
symmetric in the time domain. The imaginary part (sine
wavelet) is anti symmetric and is in quadrature with the
corresponding cosine wavelet. According to Morlet et al.
(1982) the Gabor wavelet is defined as,
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~While writing the above equation, we have taken zero as
origin time and maximum amplitude is normalized to 1. The
two parameters @, and Af are the mean angular frequency
and the duration or diameter defined as the time interval
separating the two points on the envelope where the
modulus drops to 1/2. The signal in figure 2 is generated by
using 4t = 40 m sec and =50 Hz.
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Figure 2- Time variation of a Gabor Wavelet.

RICKER WAVELET

This is one of the earliest developed and well studied
(Longman, 1980) and most widely used mathematical
source. It has similar time variation as of the source used by
Seron et al. (1996) in numerical modeling. The time
variation of the source based on Ricker wavelet is shown in
the figure 3. The mathematical function governing the
Ricker wavelet is given by Sherif and Geldart, (1993),

10= -2 2

Where f, is the central frequency of the signal. The
source frequency in present study is kept at 20 Hz.

MINIMUM PHASE WAVELET

The minimum phase wavelet has its energy loaded at its
front part. This source function approximates the dynamite
source used in field. The time amplitude graph of the
minimum phase wavelet is shown in figure 4. The source
function for the generation of minimum phase wavelet is,
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Figure 3- Time variation of Ricker wavelet.

Where A is the maximum amplitude and f is the central

g(t) = —A(sin27))e™

frequency of the wavelet. The amplitude units are arbitrary
and are different from those used in modeling.

THE MODELING PROCEDURE

We have discussed the modeling results of amplitude
anomaly model by Kelly et al. (1976) with different source
wavelet functions. The Poisson's ratio of 1/42 is maintained
throughout the model. For the lower values of Poisson's
ratio, the S-waves generated at interfaces travel with lower
velocities, resulting in wavelengths much smaller than P-
waves of the similar frequency. This causes grid dispersion,
which leads to system instability. The attempt to overcome
this effect by decreasing the node spacing has three major
drawbacks. First it increases the number of required node
points, second the source amplitude must have low value
so that the gradients are small enough for the system
stability, and finally the time step must be decreased in
order to satisfy the conditions of the system stability. Even
under the conditions of constant Poisson's ratio of 1/¥2, grid
dispersion some times appears in the resulting data. This
effect is suppressed by frequency filtering the synthetic
seismograms for high frequencies producing grid
dispersion. The idea of getting rid of grid dispersion by
frequency filtering is not new; Smith (1975) has used this
technique in Finite Element Method (FEM) modeling. The
Automatic Gain Control (AGC) with a window of 100 m sec
to.compensate for the dispersive losses is applied. It has
also been done by Reshef et al. (1988 a, b) who have
applied AGC on synthetic seismograms prepared by 3D
acoustic and elastic modeling using the Fourier method.
The models discussed are same in dimensions as
discussed by the Kelly et al. (1976).

The model out puts using Gabor and Dirac Delta
functions are dominated by grid dispersion and as its effect
could not be removed by frequency filtering so they are not
discussed here.
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Figure 4- Time variation of minimum phase wavelet

THE MODEL

The model consists of three layers (Figure 5). The top
most layer has P-wave velocity of 7100 ft/sec. The source is
exploded at a depth of 380 ft. The first interface is at a
depth of 1180 ft. The second layer P-wave velocity is
6900 ft/sec. Second interface is at 1280 ft with lower layer
having P-wave velocity of first layer i.e. 7100 ft/sec. All
above sources are used for the same model specification.
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Figure 5- The model geometry.

As a part of processing, instantaneous or Root Mean
Square AGC is applied with a time window of 100 m sec
(unless otherwise mentioned). The results for all sources
are discussed separately in following sections:

Model Response of Explosive Source

The synthetic seismograms prepared by using the
explosive point source have many advantages over the
Dirac pulse. This source provides control over the frequency
of the input signal, that can help in reducing the grid
dispersion and related phenomenon. The shape of
impulsive source used contains two peaks and frequency
filtering has almost no such effects as shape modification.
The model response of impulsive source is first applied with
AGC and then is convolved with band pass filter of window
10-40 Hz. AGC is again applied to get results. As apparent
in the figure 6, the synthetic seismograms prepared by
using the explosive source are usable up to the last part of
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Figure 6- CSP gather prepared by using explosive point source.

section. The arrival times of the reflection events are similar
in both cases. The Common Shot Point (CSP) gather
prepared by this source also shows-numerical anisotropy in
the upper parts of the section but in lower parts the
response is almost symmetric.

Model Response of Ricker Wavelet

The model is observed to be stable for the velocity
distribution model of Kelly et al. (1976) for source frequency
of 20 Hz. The shape of Ricker wavelet involves gradual
build up and decay of energy (Figure 3), this increases the
formulation stability. The Ricker wavelet does not seem to
be susceptible to FDM anisotropy (Figure 7) so it travels
through the grid with maximum symmetry, CSP gather
appears to be completely symmetric across the shot point.
The arrival times appearing on the seismic section are
similar to that of Kelly et al. (1976). Processing on Ricker
wavelet response is also simple and consists of applying
AGC gain, and convolution with Ricker wavelet of the same
frequency as that of the source.

Model Response of Minimum Phase Wavelet

Common shot point gather prepared by using the
minimum phase wavelet with frequency centered about
20 Hz (Figure 8) shows model to be stable. No grid
dispersion is visible on the final gather. The processing for
the minimum phase wavelet is similar to the Ricker wavelet
and involves convolution of the model out put with minimum
phase wavelet of same as source frequency. The numerical
anisotropy that is apparent in the initial part of gather
decreases with increasing time.

CONCLUSIONS

The attempt to overcome the grid dispersion and related
phenomenon by frequency filtering is successful only if the
system instability is within certain limits.

The model stability although mainly influenced by the
dominant frequency of the signal is also dependent on the
phase characteristics of the source function.

The numerical anistropy in all the model prepared with
different source functions decays with time.
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